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ABSTRACT

We investigate the properties and relationship between Doppler-velocity fluctuations

and intensity fluctuations in the off-limb quiet Sun corona. These are expected to

reflect the properties of Alfvénic and compressive waves, respectively. The data come

from the Coronal Multichannel Polarimeter (COMP). These data were studied using

spectral methods to estimate the power spectra, amplitudes, perpendicular correlation

lengths, phases, trajectories, dispersion relations, and propagation speeds of both types

of fluctuations. We find that most velocity fluctuations are due to Alfvénic waves,

but that intensity fluctuations come from a variety of sources, likely including fast and

slow mode waves, as well as aperiodic variations. The relation between the velocity

and intensity fluctuations differs depending on the underlying coronal structure. On

short closed loops, the velocity and intensity fluctuations have similar power spectra

and speeds. In contrast, on longer nearly radial trajectories, the velocity and intensity

fluctuations have different power spectra, with the velocity fluctuations propagating

at much faster speeds than the intensity fluctuations. Considering the temperature
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sensitivity of COMP, these longer structures are more likely to be closed fields lines of

the quiet Sun rather than cooler open field lines. That is, we find the character of the

interactions of Alfvénic waves and density fluctuations depends on the length of the

magnetic loop on which they are traveling.

1. INTRODUCTION

Wave-driven models of coronal heating consider that energy is transported to the corona by Alfvén

waves, which damp in the corona and transfer that energy into particle heating. In most models,

wave dissipation is mediated by a turbulent cascade of wave energy from the long length scales of

Alfvén waves to smaller scales where particle interactions can heat the plasma. Turbulence arises

through a nonlinear interaction between counter-propagating Alfvén waves (Howes & Nielson 2013).

In closed loops, counter-propagating waves arise naturally as waves excited at the two footpoints of

the loop interact near the loop top. In open structures, such as coronal holes, the origin of sunward

propagating waves is less clear. Large scale gradients in the magnetic field and density in the corona

are thought to be too weak to efficiently reflect Alfvén waves (Réville et al. 2018; Asgari-Targhi et al.

2021).

The reflection of waves may be enhanced by interaction with fluctuations in the plasma density,

such as an interaction with slow mode waves (Asgari-Targhi et al. 2021). Alfvén waves are expected

to be reflected from parallel gradients in the Alfvén speed and density fluctuations increase these

gradients (Heinemann & Olbert 1980; Musielak et al. 1992; Velli 1993). Theoretical models for open

magnetic field regions show that adding density fluctuations to the plasma significantly enhances wave

reflection and turbulent heating compared to a smooth radial variation of the background plasma

parameters (Asgari-Targhi et al. 2021).

Another process that may produce the sunward propagating waves is the parametric decay instabil-

ity (PDI). This is a nonlinear interaction in which a forward propagating “pump” Alfvén wave excites

a forward acoustic wave and a backward secondary Alfvén wave. PDI is able to enhance turbulence

and promote coronal heating in several ways. First, PDI directly generates a backward propagat-
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ing Alfvén wave, which can interact with forward propagating Alfvén waves excited at the Sun to

drive turbulence. Second, PDI produces large amplitude density fluctuations in the form of acoustic

waves, which promotes Alfvén wave reflection. There has been much numerical work showing how

PDI may lead to efficient coronal heating (Shoda & Yokoyama 2016; Réville et al. 2018; Shoda et al.

2018, 2019). There is also evidence suggesting that PDI occurs in the transition region (Hahn et al.

2022a) and indirect evidence that it has influenced the solar wind (Bowen et al. 2018; Kasper et al.

2021), although direct evidence for PDI in the solar wind is still lacking (Zank et al. 2022; Zhao et al.

2022).

Besides these, there are many other potential interactions between Alfvén waves and density fluctu-

ations. For example, low frequency large amplitude waves may drive density fluctuations due to the

wave magnetic pressure (Hollweg 1971a,b). Additionally, Alfvén waves propagating along magnetic

flux tubes with strong gradient in the density or magnetic field strength perpendicular to the mean

field may undergo nonlinear phase mixing, generating fast mode waves (Nakariakov et al. 1997).

Our objective here is to identify observational relationships between velocity and density fluctu-

ations in the quiet Sun corona. We take a global view, observing the entire off-limb low corona

up to about 1.3 R⊙ during a typical time that does not appear to be affected by any remarkable

events. We study spectroscopic data observing an Fe xiii line, which has a formation temperature of

about 1.8 MK. Given the high temperature of the line, we observe material from the quiet Sun and

active regions, but not the cooler plasma associated with coronal holes and open field lines. Velocity

fluctuations are observed through the Doppler shift of the emission lines and the density fluctuations

are related to the intensity of the line. Throughout, we refer to fluctuations rather than waves as

there may be other sources of variations. We expect, however, that many velocity fluctuations are

due to Alfvénic waves and the density fluctuations to compressive waves. We use the term Alfvénic

phenomenologically to refer to magnetized plasma waves propagating at about the Alfvén speed, as a

more precise description of their nature, such as being kink or torsional modes, is difficult to ascertain

observationally. We test the validity of our interpretations of the fluctuations as part of the analysis.

Additionally, although our broad view is not limited exclusively to a particular physical process, we
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do test in more detail for PDI using methods developed by Hahn et al. (2022a), such as by looking

for a frequency scaling between the power spectra of intensity and velocity fluctuations.

The rest of this paper is organized as follows. In Section 2 we give a brief overview of the instrument

and describe the observations. The analysis is presented throughout Section 3. There, we aim to

describe a broad range of properties of the observed density and velocity fluctuations. We begin

with characteristics that can be obtained from time variation within a single pixel, then describe

how we can track the wave propagation through the plane of sky, and finally derive properties of the

waves that depend on both the space and time evolution of the fluctuations. In the course of the

analysis, we describe relevant comparisons to other works and possible conclusions based on those

measurements. We defer some interpretations that rely on multiple aspects of the analysis to the

discussion in Section 4. Section 5 summarizes the main results.

2. INSTRUMENT AND OBSERVATIONS

We use data from the Coronal Multichannel Polarimeter (COMP; Tomczyk et al. 2008). COMP

uses a tunable filter and polarimeter to make spectropolarimetric observations at three wavelengths

that span the Fe xiii 10747 Å emission line. At each of the three wavelengths, COMP produces an

image of the off-limb solar corona in the four Stokes parameters, however for the applications to be

discussed here, we are concerned only with the spectroscopic aspects of the data. These images span

a radial distance of about 1.05–1.3 R⊙ with a spatial resolution of approximately 4.5′′ per pixel. We

have used the Level-2 COMP data product, available through the Mauna Loa Solar Observatory,

which provides the intensity and Doppler velocity of the line, as interpreted by assuming that the

Fe xiii 10747 Å line has a Gaussian shape (see Sharma & Morton 2023).

Our data were obtained on 2016 July 25 from 20:25 to 21:53 UT. Figure 1 presents a context image,

showing the time-averaged Fe xiii 10747 Å intensity measured during the observation. The labels

in the image are intended to highlight several apparent structures. Labels 1, 3, 4, and 7 are located

near short closed loops, whose loop tops are clearly visible within the COMP field of view. Labels 2

and 5 are located near much longer structures, that appear nearly radial at the low heights within

the field of view. These long structures are most likely the bases of long quiet Sun streamer loops.
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Although they appear “open” in this dataset, the Fe xiii emission viewed by COMP is formed at

high temperatures and so we do not expect to see the open magnetic fields from coronal holes. For

future reference, we observationally define the short loops as those whose loop tops are below 1.3 R⊙

so that the entire loop is visible in the COMP data, and we define long loops as those that extend

to much larger heights. Finally, on the west limb near the region labeled 6, there are several active

regions (NOAA 12565, 12566, and 12567) behind the limb, resulting in complex magnetic structures

in the corona. Because of the complex magnetic structure there and to improve the clarity of the

presentation, we will often show figures focusing on the more quiescent East limb. A context image

showing this more condensed field of view is shown in Figure 2.

During the observation, COMP obtained intensity and velocity data with a regular cadence of

∆t = 30 s. Our aim is to determine the typical relationships between velocity and density fluctua-

tions in the corona. There was no particular scientific significance to the selected date, which was

chosen at random. By coincidence, it turns out that the same dataset was one of those studied by

Sharma & Morton (2023) in their recent study of the perpendicular correlation length for Alfvénic

waves.

Our data set contains a time series of two-dimensional spatial maps of the intensity and Doppler

shift in the corona. The COMP Level-2 data calibration pipeline sets to zero any pixels where the

intensity was below a threshold of two millionths of the sky brightness. However, these pixels are

not necessarily the same in each image. We therefore masked the dataset by omitting any pixel in

all the maps where any of the 176 data points in the time series had an intensity that fell below that

threshold. There are similar artifacts close to the occulted region, which we remove by masking out

pixels below 1.08 R⊙. These filters remove about 15% of the initial data, or about 9000 out of 66000

pixels.

For the analysis of fluctuations it is necessary to have data whose mean is zero and remove any long

term trends. This was done for the velocity fluctuations, δv, by performing a linear fit to the time

series at each pixel and then subtracting that linear trend. The intensity fluctuations were treated
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in the same way, except that we also normalized the data by the intensity trend so that we study

δI/I, which we will denote as δi throughout.

For collisionally excited lines, the intensity is proportional to the square of the electron density

n2
e (Phillips et al. 2008). Consequently, density fluctuations and intensity fluctuations are related by

δne/ne ∼ δi/2. We can apply this analysis to our study here because, although the level population

of the Fe xiii 10747 Å line in the corona is primarily set by radiative decays from higher levels, those

levels are collisionally excited. Hence the Fe xiii line intensity fluctuations will exhibit the above

relationship to density fluctuations.

3. ANALYSIS AND RESULTS

3.1. Amplitudes

The power spectra and amplitudes of δv and δi can be inferred from the time series of data at each

good pixel in the dataset. In principle, the root-mean-square (RMS) amplitude of the fluctuations

could be determined by taking the square root of the variance of the time series data. However, this

overestimates the amplitude due to the noise contribution from nonphysical sources of variation, such

as detector noise, photon counting statistics, and variations due to stray light from other locations

within the image. We applied a correction to mitigate some of these factors. The same analysis is

used for both δv and δi, but for brevity we discuss the analysis using δv as an example.

First, we computed the discrete Fourier power spectrum (periodogram) at each pixel for δv(t). The

resulting power spectrum Pδv(fj) describes the variance in v(t) due to oscillations at frequency fj .

The total
∑

j Pδv(fj) is equal to the variance of δv(t), so the RMS amplitude of the fluctuations is

the square root of the summed power spectrum. In order to reduce the statistical uncertainty in the

estimated Pδv(fj), the power spectrum from a given pixel at position (x, y) is averaged with that of

its neighbors. This averaging produces a more precise estimate of the power spectrum, but does not

remove the contributions of noise.

In order to estimate the noise level, we assume that the physical sources of variation in δv(t)

are the same for the reference pixel and its neighbors and that variations from noise are random
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Figure 1. Context image showing the average Fe xiii intensity observed by COMP during the observations.

Labels highlight several apparent coronal structures: 1, 3, 4, and 7 label regions with relatively short closed

loops; 2 and 5 indicate quiet Sun regions where the field lines are long and extend well beyond the field

of view; in the vicinity of the label 6, there is an active region just behind the limb that leads to complex

structures in the corona. The boxes surrounding 1 and 2 indicate the regions considered for the average

power spectra discussed in Section 3.2.

and uncorrelated so that we can decompose the measurements into a physical signal, s(t), plus
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Figure 2. Same as Figure 1, but focusing on the East limb.

random noise, e(t), giving δv(t) = s(t) + e(t). Then, we can average the time series to obtain
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δv(t) whose variance from physical sources remains the same but for which the contributions to the

variance from random noise are reduced by a factor of 1/K, where K ≤ 9 represents the number

of pixels including the reference pixel and up to eight neighboring good pixels. This relation also

holds at each frequency in the power spectrum, and we can estimate the noise power spectrum as

Pe(fj) = (Pδv(fj)−Pδv(fj))/(1− 1/K). The inferred noise power spectrum, Pe(fj) did not exhibit a

clear frequency-dependence, so to reduce statistical uncertainties, we further assume the noise level

to be constant (i.e., white noise) and take the average Pe over all the frequencies. Finally, we subtract

this Pe from Pδv(fj), sum the power over all the frequencies, and take the square root to obtain the

RMS amplitude of the δv fluctuations. The noise estimate reduces the average inferred amplitude of

δv fluctuations by about 0.1 km s−1 (≈ 15%) and reduces the inferred amplitudes of δi fluctuations

by about 0.004 (≈ 20%), compared in each case to when no correction is made.

There are clearly some limitations to this method. First, we can only remove uncorrelated random

sources of noise. Any noise sources that affects neighboring pixels in a similar way cannot be removed.

For example, stray light fluctuations due to variations on the solar disk are likely similar in these

off-limb pixels and their effects are not removed. Additionally, averaging the time series reduces the

amplitude of any fluctuations that are out of phase with one another. Most relevant to this work,

any traveling waves will have slightly different phases in neighboring pixels along the wave path and

so the inferred amplitude will be slightly reduced by the averaging.

Morton et al. (2016) used a different method to estimate the noise level from COMP data. They

smoothed the data using a 3-point boxcar average over time and then subtracted the smoothed

fluctuations from the original time series. The standard deviation of the residuals then gives an

estimate of the noise level. We found that using their method compared to our approach produces δv

amplitudes that are smaller by on average 0.07 km s−1 and δi amplitudes that are smaller by about

0.001. That the amplitudes are systematically smaller may be due to the boxcar-average method

implicitly assuming that all high frequency signal is due to noise. Nevertheless, these discrepancies

are relatively small, ≈ 10% of the amplitudes, and so the following results are not very sensitive to

the way the noise level is estimated.
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Figures 3 and 4 show maps of the RMS amplitudes for the δv and δi fluctuations on the east limb,

respectively. The δv amplitudes are found to be in the range of about 0.5–1 km s−1 throughout

most of the field of view, which agrees with previous measurements based on the COMP data (e.g.,

Tomczyk et al. 2007; Tomczyk & McIntosh 2009). Many of the δv fluctuations are due to Alfvénic

waves, but these measurements likely underestimate the true wave amplitudes due to the implicit

line-of-sight averaging (McIntosh & De Pontieu 2012).

The δv amplitudes appear to be larger near the poles. One possibility is that this represents a

difference in the characteristics of the waves on the long field lines bordering the coronal holes near

the poles as compared to the shorter loops found at lower latitudes. The high formation temperature

for Fe xiii makes it unlikely that any of the emission observed by COMP comes from open field

regions. As such, it seems more likely that the increased amplitudes at the poles is due to line

of sight effects, such as a change in the average viewing angle of the line of sight with respect to

the magnetic field. We may be observing at the poles a larger contribution from δv fluctuations

in the parallel flows along the field rather than the transverse waves that likely predominate in the

lower latitude parts of the observations. Alternatively, there may be less line-of-sight averaging near

the poles because the depth of Fe xiii emitting material along the line of sight is smaller due to

the presence of the cooler coronal hole material. As line-of-sight averaging is known to reduce the

inferred amplitudes, having systematically less averaging at the poles would result in a systematically

larger inferred amplitude.

The δi amplitudes in the low corona appear to be typically on the order of a few percent and

increase systematically with height. However, these amplitudes are likely to be systematically un-

derestimated at the largest heights, because we have not accounted for scattered light. The relative

intensity fluctuation δi is the intensity fluctuation δI normalized by the time-averaged intensity at

that position; but this average intensity has not been corrected for scattered light. Thus, the nor-

malization factor is overestimated and the δi amplitudes are likely underestimated. The contribution

of scattered light to the total intensity is expected to grow with height, so that the underestimate in

the δi amplitudes also grows with height.
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The largest δi amplitudes also appear to be associated with the tops of coronal loops. This is partly

due to the general trend that δi grows with height, but may also be due to turbulence. Previous

observations by De Moortel et al. (2014) showed that the power spectrum of δv fluctuations was

broader at loop tops and suggested that this was due to turbulence. Turbulence might also lead to

an increase in density fluctuations. Density fluctuation amplitudes in open field regions have been

observed to increase with height and that increase was associated with apparent damping of the

Alfvénic waves (Hahn et al. 2018).
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Figure 3. Amplitudes of δv fluctuations.
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Figure 4. Same as Figure 3, but for δi fluctuations.
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3.2. Power Spectra

In order to compare the typical power spectra for δv and δi fluctuations, we have averaged the

power spectra over the boxed regions in Figure 1: region 1 with short loops and region 2 with

long radial structures. To perform this averaging, we computed the power spectra at each pixel

within each region. Histograms of the statistical distribution of the measured power within a given

frequency bin showed that the results appeared to follow an exponential distribution. This is the

expected statistical distribution for the power at a given frequency (Vaughan 2005). The reason is

that the real and imaginary parts of the discrete Fourier transform are expected to follow a normal

distribution and so their squared sum, the power, follows a chi-squared distribution with two degrees

of freedom, which is an exponential distribution. We then take the average power derived from all of

those pixels within each frequency bin. Finally, we subtracted the noise power level that was inferred

using the boxcar smoothing method of Morton et al. (2016) discussed above in Section 3.1. This

noise level was about 2 × 10−3 km2 s−2 for the δv fluctuations and 2 × 10−6 for the δi fluctuations.

The exponential distribution has the property that the standard deviation is equal to the mean,

so the uncertainty on each power spectrum is essentially 100% (see e.g., Vaughan 2005). However,

the statistical uncertainty of the average power at a given frequency is the power at that frequency

divided by
√
N , where N is the number of samples. Here, N = 3778 samples for region 1 and

N = 5571 samples for region 2, so the statistical uncertainties are very small. However, this does

not account for pixel-to-pixel variations in the power spectrum, which is likely the dominant source

of uncertainty in the final results.

Figure 5 shows the average power spectra for the δv fluctuations. The power spectrum for δv

consists of a power law continuum with a hump near f ≈ 3.5 mHz. The power spectra from the

short loops and the long radial structures are nearly identical, both in shape and in magnitude.

These results are also very similar to previous COMP measurements (e.g., Tomczyk & McIntosh

2009; Morton et al. 2016).

The power spectra for the δi fluctuations are shown in Figure 6. Here, we find a rapid decay for

low frequencies, that levels off to a nearly flat white noise type spectrum above about 2 mHz. One
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possible reason for this difference in the overall shape of the power spectrum between δv versus δi

fluctuations is that the δv fluctuations may be due largely to wave-like oscillations dominated by a

few frequencies, whereas the δi fluctuations are caused by many underlying physical processes, such

as waves, heating, flows, etc., occurring on a variety of timescales. The overall shape of the δi power

spectrum is very similar between the short and long loops, except near 3 mHz. At that frequency,

the short closed loops show a clear peak, whereas this peak is much less prominent in the region with

the long radial structures. To verify this, we performed the same analysis using data in the vicinity

of regions 4 and 5 in Figure 1, containing short versus long loops, respectively. Those regions also

exhibited the relationship that the 3 mHz peak in the δi fluctuations is broader and shallower on the

long streamers.

One possible interpretation of this result is that the 3 mHz power represents the perturbations

at the base of the corona that excite both Alfvénic waves and density fluctuations. On the short

loops, power at this frequency is injected at both ends of the loop and the influence of the boundary

remains evident throughout the loop. On the longer structures, the excited Alfvénic wave power

evidently does not undergo a significant change, but the density fluctuation power spectrum evolves.

This may occur through damping of the initially excited acoustic modes and the excitation of new

density fluctuations with different characteristics at larger heights, such as through parametric decay

of Alfvén waves or other processes.

3.3. Frequency scaling

We next examine whether there is a frequency-scaling relationship between the δv and δi fluctua-

tions. Hahn et al. (2022a) found that the power spectra of δv and δi fluctuations in the transition

region were related to one another by a scaling of the frequency axis. They considered this a signa-

ture of PDI, interpreting the frequency scaling factor to represent the ratio of the pump Alfvén wave

frequency to the frequency of the PDI resonantly excited slow mode wave. Here, we used the same

method to determine the scaling factor, α, by which the frequency axis of the δi power spectrum

Pδi(αf) should be scaled to maximize the cross correlation with the δv power spectrum Pδv(f). For



16

Figure 5. Average power spectra for δv fluctuations in the regions labeled 1 and 2 in Figures 1 and 2,

which correspond to short closed loops and long radial structures, respectively.

each pixel in the dataset, we have averaged the power spectra over all the neighboring good pixels,

which is typically an average over K = 9 pixels.

Figure 7 shows the scaling factors between the δi and δv fluctuations. Here we have suppressed

any pixels where the maximum correlation coefficient was below 0.7, which is about 40% of the

unmasked pixels. The cutoff of 0.7 was chosen because it corresponds to a p-value of about 0.05, i.e.,

the probability that the correlation arose by chance is estimated to be less than 5%. However, that

estimate relies on the idealized condition that the underlying correlated variables followed a normal

distribution. Here, we consider it only as a way for removing distracting points from the plot of the

scaling factor that most likely do not correspond to actual correlations.

We do not find a clear relationship between intensity and velocity fluctuations. We commonly

find α values close to unity, especially in the coherent closed loop structure seen in the lower left

quadrant. One possibility is that these oscillations represent the velocity and compressive fluctuations
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Figure 6. Same as Figure 5, but for δi fluctuations.

associated with the same wave mode. Somewhat larger values of α ≈ 1.5 − 2 are seen on the long

field lines at lower latitudes. This relationship might be consistent with PDI, discussion of which we

defer to Section 4.
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Figure 7. Frequency scaling factor between δi and δv fluctuations.
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3.4. Phase Relationships

The phase relationship between the δv and δi fluctuations also provides clues as to the nature of

these fluctuations. If the fluctuations arise from the same underlying wave mode, we expect δv and δi

to have a definite phase difference. For example, a fast sausage mode observed perpendicular to the

magnetic field should exhibit a phase difference of π/2 between the velocity and density oscillations

(Gruszecki et al. 2012), or a slow mode wave observed parallel to the field should exhibit a phase

difference of zero (e.g., Ofman et al. 2000).

We have examined the phase differences between the fluctuations by computing the Fourier cross-

power spectrum between δv and δi in each pixel (White & Athay 1979). The phase differences

φ(x, y, f) are derived from the real and imaginary parts of the cross-power spectrum at each frequency

and at each pixel. As discussed above, the Fourier coefficients have large uncertainties so an averaging

is needed in order to assess whether the phase difference is significant. For this, we assume that the

relation between the δv and δi fluctuations varies slowly in space so that the phase differences should

be similar between a given pixel and its eight neighboring pixels. Then, we compute the average

phase φ over the central pixel and up to eight good neighboring pixels and a quantity that measures

the dispersion of these φ values.

The analysis of the phase angle requires special treatment because φ is cyclical, so one cannot

simply take the standard arithmetic mean. Instead, we find the mean by averaging the unit vectors

corresponding to each value of φ (Mardia & Jupp 2000). We compute the mean value of C̄ = 〈cos(φ)〉

and S̄ = 〈sin(φ)〉, where the angle brackets denote the arithmetic mean. Then the average value of

the phase difference is φ̄ = arctan (S̄/C̄), producing angle in the range of −π to π. The concentration

of the angles is described by the mean resultant length R̄ = (C̄2+ S̄2)1/2, which is a number between

0 and 1. That is, if all of the angles in the set over which the average is taken were in the same

direction, then R̄ = 1 and if they are all randomly distributed R̄ = 0. It is useful to define instead

the dispersion V̄ = 1 − R̄, also called the circular variance, which corresponds to the more familiar

interpretation that this number represents a spread of values so that a smaller number suggests a

stronger relationship.
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We have applied the above steps to compute φ̄(x, y, f) and V̄ (x, y, f), where the average is taken

over each pixel and the up to eight neighboring good pixels. Figure 8 presents a map of the dispersion,

V̄ at 3.5 mHz, corresponding to the peak in the δv and δi fluctuation power spectra. We find that

there are low-dispersion structures extending out from the base of the corona that appear to largely

follow the magnetic field lines. At larger heights the dispersion is large, corresponding to essentially

random phases. This may be due to increasing scatter in the data from noise or to physical processes

that cause the break up of coherent wave modes. Even at low heights, though, there are many

locations with a high dispersion. The clear spatial structuring of the V̄ that aligns with observed

coronal structures supports that there are strong phase relationships between δv and δi fluctuations.

Figure 9 shows the absolute value of the measured phase angles
∣

∣φ̄(x, y)
∣

∣ at the same frequency of

3.5 mHz. The reason for plotting the absolute value is that φ = −π and φ = π correspond to the

same phase difference. In this plot we have suppressed locations with a high dispersion by plotting

only those pixels where V̄ ≤ 0.4. This cutoff was chosen as it corresponds, approximately, to a

p-value of 0.05 (Mardia & Jupp 2000). Although there is a great deal of scatter in the data, there

appears to be a tendency for the phase values near the equator to have have φ ∼ π/2, whereas at

middle to high latitudes φ ∼ 0 is more common. In terms of coronal structures the equatorial region

contains more long field lines, whereas the middle to high latitudes have the shorter closed loops.
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Figure 8. Dispersion, V̄ , of the phase differences between the δv and δi fluctuations at 3.5 mHz. A dispersion

of 0 indicates that the phases of fluctuations at neighboring pixels were the same, while a dispersion of 1

indicates that the phases of neighboring pixels were all different.
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Figure 9. Nearest-neighbor-averaged phase differences φ̄ between δv and δi fluctuations at 3.5 mHz for

locations with a statistically significant low dispersion.
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3.5. Wave tracking

For many properties of the waves, it is necessary to measure the fluctuations in both time and space

along the path of the waves. So, a first step in such an analysis is to determine the trajectories of the

waves. We used a method based on measuring the cross correlation of the fluctuations to determine

the wave travel direction at each pixel. Once the directions are known, then the wave paths in the

plane of the sky can be found by stepping along the trajectories using Euler’s method. In the course

of this analysis, we also determine the parallel and perpendicular correlation lengths.

Our method for determining the wave direction is based on the correlation method presented by

Tomczyk et al. (2007). Our measured power spectra (Figure 5), and previous work by others, has

shown δv fluctuations in the corona tend to have a peak power around 3.5 mHz and we found δi

fluctuations to have a peak at a similar low frequency. So, we first apply a low pass Butterworth

filter to the data with a cutoff above 7 mHz to reduce the impact of high frequency noise. (Note

that this filter was only applied for this wave tracking step and not in any of the following analyses

of the power spectra along the wave path.) Then, for each pixel we compute the cross correlation cij

between that pixel i and all of its neighbors j within ±12 pixels (±54′′). This reveals an oval island

of high cross correlation with a long axis oriented along the direction of wave travel. The ±12 pixel

limit was selected because it was found to be large enough to contain these islands without being

so large as to be influenced by random cross correlations with distant structures. To quantify the

travel direction, we can find the slope of the line that will minimize the square of the perpendicular

distance to each point in the island above a threshold high correlation. Here, we defined a high

correlation to be a correlation coefficient > 0.6. This value was chosen by inspection as it results

in islands with a large enough number of pixels to estimate the orientation consistently, while also

providing a reasonable noise cutoff. The computation of the best fit line was performed using a

principal component analysis. That is, we computed the covariance matrix for the coordinates, then

found the eigenvalues and eigenvectors of the covariance matrix. The direction parallel to the wave

path is given by the eigenvector corresponding to the largest eigenvalue and the other eigenvector

gives the perpendicular direction.
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This process was repeated for every pixel in the COMP data to build up a map of the wave travel

directions. We can then track waves through the map by selecting a starting pixel and then using

Euler’s method to step forward and backward along the path to solve for the entire wave trajectory.

Figure 10 shows examples of wave trajectories traced starting from initial positions located at a

radius of r = 1.1 R⊙ and varying polar angles, θ. For clarity, the plot illustrates wavetracks starting

only from every fifth pixel along that arc. The resulting wave trajectories show good agreement with

the apparent shapes of coronal structures seen in Figures 1 and 2, which is evidence that the method

is accurately tracking the waves. One exception is at the west limb, near the active regions, where

the wave trajectories take on a jagged appearance due to the complex intervening structures along

the line of sight.

We will compare our results to several other publications also based on COMP, so it would be

useful to discuss some of the differences between the wave tracking method used here and those used

by others. Our method is most similar to that of Tomczyk et al. (2007), except that Tomczyk et al.

Fourier filtered the time series using a Gaussian filter centered at 3.5 mHz, whereas we have only

used a low pass filter. In a later paper, Tomczyk & McIntosh (2009) used a coherence based method

(McIntosh et al. 2008) and the same method was later used by Sharma & Morton (2023). The

coherence between the time series is computed using the cross spectrum. Because the raw cross

spectrum of two time series will always give a coherence of unity (Jenkins & Watts 1968), it is

necessary to average the cross spectra in some way to obtain a meaningful coherence value. For the

above studies, this averaging takes place at the step where the Gaussian filter is applied. The reason

we have not adopted this approach is that our objective is to understand the relationship between the

δv and δi fluctuations and we posit that this might involve a frequency scaling between the waves.

As such, we avoided assuming that the waves have a particular frequency by not filtering the data

at 3.5 mHz. A drawback is that noise may be suppressed less here than in those other studies.

3.6. Perpendicular correlation lengths

The perpendicular correlation length can be quantified directly from the constructed cross-

correlation calculations. This length represents the extent to which the plasma is perturbed in
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Figure 10. Wavetracks derived from the δv fluctuations. Each of these paths were traced from a starting

point at 1.1 R⊙. We highlight one trajectory on the lower left in blue and we use this path as an example

throughout the paper in describing our methods.

the perpendicular direction due to the wave. It is also related to the size of the source of wave

excitation, analogous to the size of the antenna in a laboratory plasma. In the context of turbulence,

it may be thought of as the largest scale eddy.
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To quantify this perpendicular correlation length, we found the characteristic transverse width

of the island of high correlation by fitting it with a Gaussian. The island of high correlation is

peaked in the center, with the central pixel having correlation coefficient cii = 1, and declines

toward the boundaries. This island can be modeled as a two-dimensional Gaussian distribution

(e.g., Sharma & Morton 2023) and the width characterized by the standard deviations of the parallel

and perpendicular axes, σ‖ and σ⊥. To determine the value of σ⊥, we summed the cij along the

parallel direction and fit the resulting distribution of cij versus perpendicular distance with a one-

dimensional Gaussian. Since the integral of a two-dimensional Gaussian along one axis preserves the

σ for the other axis, this summation reduces the dimensionality of the problem without affecting σ⊥.

Sharma & Morton (2023) noted that solar wind studies of perpendicular correlation lengths report

the exponential 1/e length scales given by an autocorrelation function; and so in order to better

compare to these values, we likewise scale our Gaussian correlation lengths by a factor of
√
2 defining

L⊥ =
√
2σ⊥.

The perpendicular correlation lengths for δv take a broad range of values and a histogram resembles

a lognormal distribution, as has been found by Sharma & Morton (2023). We found the median

L⊥ = 7.0 Mm and the most probable value (i.e., the mode) is L⊥ = 5.0 Mm. This is somewhat smaller

than found by Sharma & Morton (2023) who found that the most probable values were in the range

of L⊥ = 7.6 − 9.3 Mm among several observations. One possible reason for the discrepancy is that

Sharma & Morton focuses specifically on fluctuations at frequencies of 3.5 mHz, whereas our data

is less strongly filtered. Given the broad statistical distribution of L⊥ values in the measurements,

there is still substantial overlap in these measurements and the discrepancy is small.

The L⊥ map derived from δv (Figure 11) shows relatively low L⊥ areas (L⊥ . 9 Mm) that appear

to follow the coronal loops in the images. There are clumps of high L⊥, particularly at low heights

and also the active regions on the west limb (not shown in the figure). One possible interpretation

is that the low L⊥ represents Alfvénic waves traveling along individual magnetic flux tubes, while

the high L⊥ represents structures undergoing large scale oscillations so that L⊥ is due to the entire
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structure being generally excited rather than to characteristics of a traveling wave mode. We found

no discernable trend of L⊥ varying with height.

With respect to intensity fluctuations (Figure 12), the range of L⊥ derived from δi was even broader

than that for δv, having a median value of L⊥ = 10.8 Mm and a mode of L⊥ = 3.7 Mm, though

still comparable to the range found for the δv. The spatial distribution for the δi L⊥ shows broader

structures than that for δv. These may represent regions affected by large scale intensity changes as

those structures undergo heating and cooling throughout. Those processes may not lead to similar

signatures in the Doppler velocities, because any associated flows are likely to be parallel to the

magnetic field and so perpendicular to the line of sight at the limb, resulting in minimal Doppler

shifts.

It is interesting that L⊥ for both δv and δi fluctuations are an order of magnitude larger than

apparent widths of coronal loops. Analysis of loops in high-spatial-resolution images has shown

that the typical widths of coronal loops are ≈ 0.5–1.5 Mm (Peter et al. 2013; Aschwanden & Peter

2017). One might have expected that phase mixing at the boundary of coronal loops would interrupt

the correlations leading to wave patterns and loops having similar size distributions. One possible

reason this does not occur comes from simulations of Alvén waves on multi-stranded loops showing

that strands can influence their neighbors, which would result in L⊥ larger than the scale of the

underlying structures (Guo et al. 2019). Another possibility is that the images of loops may not be

an accurate representation of the true coronal density structure (e.g., Malanushenko et al. 2022).

Similarly, we also expect to find small values of L⊥ if the fluctuations are related turbulence.

Turbulence is thought to be important for the generation and evolution of Alfvénic waves in the solar

corona. If the fluid motions that generate the Alfvénic waves are turbulent, we would expect waves

to be excited with a broad range of perpendicular length scales. Moreover, if turbulence occurs in

the corona, then we would expect energy initially excited at large L⊥ to cascade to small L⊥. A

potential physical explanation for why small values of L⊥ are not observed is that small values of L⊥

are efficiently dissipated.



28

It is possible, though, that we observe few small values of L⊥ because the measurements have

limitations from spatial resolution, noise, and line-of-sight averaging. To test this, we have studied in

more detail the distribution of our L⊥ measurements. Sharma & Morton (2023) commented that the

distribution of L⊥ values in the COMP data appear to approximately follow a lognormal distribution

and we find a similar distribution here. In Appendix A we investigate the statistical distribution in

more detail with the aim to determine whether there may be small L⊥ values that are not resolved. In

particular, we consider the hypothesis that the actual distribution of L⊥ in the corona follows a power

law, and argue that the addition of noise and line-of-sight averaging can distort the measurements,

producing a histogram that can match the observed one. The implication is that known systematic

issues are capable of biasing our L⊥ measurements to larger values. However, the arguments are

speculative (which is why we relegate them to the Appendix).

Future work to understand the perpendicular correlation lengths will require higher spatial res-

olution measurements and a deeper understanding of systematic uncertainties in the observations.

We plan to analyze measurements with higher spatial resolution instruments, such as the Daniel K.

Inouye Solar Telescope (DKIST; Rast et al. 2021) to address some of these limitations.
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Figure 11. Map of L⊥ for the δv fluctuations.
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Figure 12. Map of L⊥ for the δi fluctuations.



31

3.7. Time-distance plots and k-ω diagrams

We can measure properties of the wave as they propagate along the trajectories identified in Fig-

ure 10, allowing us to infer the wave speed and direction. To do this, we first combine the time series

of fluctuations at each pixel along the wave path to construct time distance plots δi(t, s) and δv(t, s),

where s is the distance along the trajectory.

Next, we took the Fourier transform of the time-distance plot and constructed a wavenumber-

frequency k-ω diagram. Note that it is conventional to use angular frequency ω for such a plot, even

though elsewhere we usually refer to the oscillation frequency f . Figure 13 shows the k-ω diagram for

δv fluctuations along the wave trace indicated in Figure 10. Here we have used the sign convention

that negative ω corresponds to antisunward (upward) traveling waves and positive ω corresponds to

sunward (downward) traveling waves.

In Figure 13 the wave power appears concentrated along two ridges. Since the phase speed of a

wave is given by ω/k, these ridges have a slope that is the inverse of the wave phase speed. The

dashed lines in the figure correspond to 1 Mms−1, which is a typical Alfvén speed in the corona.

The dashed lines were drawn by hand to “guide the eye”, yet it does align roughly with a ridge in

the power spectrum, suggesting that the δv fluctuations are due to Alfvénic waves, such as kink or

torsional Alfvén modes. More precise measurements of the phase speed are presented in Section 3.9.

Figure 14 plots the k − ω diagram derived for δi fluctuations along the same trajectory. Dashed

lines on the plot correspond to wave speeds of 1 Mms−1 and 0.2 Mms−1, representing typical Alfvén

and sound speeds, respectively. Although there is some δi power along and between these lines,

we do not find distinct ridges indicative of a particular wave mode. The majority of the power is

concentrated at low ω and low k, which likely represents long term changes in the intensity of large

scale structures due to heating, cooling, or other evolution. That the power does not align with a

clear wave mode suggests that much of the δi variation observed in the corona is not due to waves,

although waves are likely also present.

3.8. Upward versus downward waves
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Figure 13. k-ω diagram for the δv fluctuations along the trajectory shown in Figure 10. The dashed lines

indicate a wave speed of 1 Mms−1, which is a typical Alfvén speed in the corona.

We can estimate the balance of upward versus downward waves by comparing the total power P at

negative versus positive frequencies, respectively, having finite wavenumber k > 0. We will quantify

this ratio by defining η = (Pup−Pdown)/(Pup+Pdown). Because noise power will affect the denominator

in η, we first estimate the noise level and subtract it from each pixel. The k − ω diagram suggests

that the wave power is concentrated in the ridges at low k and that the power at high k and high ω

is likely due to noise. So, we estimate the noise in each k and ω bin as being the average power in

upper corners of the diagram containing the highest 10% of wavenumbers and angular frequencies.

This value is then subtracted from each bin of the diagram before computing η. For the example

shown in Figure 13, we find ηδv = 0.24, indicating predominantly upward-propagating waves. We

compute the imbalance of upward versus downward δi power in the same way. Similarly, for the δi

fluctuations shown in Figure 14, we find ηδi = 0.07, indicating that traveling δi fluctuations tend to
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Figure 14. k-ω diagram for the δi fluctuations along the trajectory shown in Figure 10. The dashed lines

indicate wave speed of 1 and 0.2 Mms−1, corresponding to typical Alfvén and sound speeds in the corona.

be moving upward. The magnitude of ηδi is smaller than ηδv, but this is likely because a significant

amount of the δi fluctuation power is not in a traveling wave.

Figure 15 shows a polar plot illustrating the wave power imbalance for all wave trajectories starting

at 1.1 R⊙ like those in Figure 10. Red symbols indicate the imbalance for velocity fluctuations,

ηδv, and blue symbols for intensity fluctuations, ηδi. The solid circle indicates zero, so symbols

at larger radii indicate predominantly upward traveling waves while those at smaller radii indicate

predominantly downward traveling waves. For scale, the dotted circles are drawn at intervals of

∆η = 0.1.

We find that ηδv and ηδi are usually positive. Although there appear to be exceptions at several

locations, referring to Figure 10 shows that these locations all correspond to trajectories that travel

along the top of a short coronal loop. In such cases our definition of “up” and “down” along the wave

trajectory does not have a clear interpretation as being towards or away from the Sun. However,
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it is interesting that such loops do show a clear imbalance. One possibility is that this indicates a

stronger wave driving from one footpoint of the loop compared to the other. We also find that ηδv

and ηδi are strongly correlated with one another. Quantitatively, their correlation has a Spearman

coefficient of 0.8. We find average magnitudes of ηδv = 0.14 and ηδi = 0.09, indicating waves are

traveling predominantly, though not exclusively, away from the Sun. The smaller value for ηδi is

likely due to δi having relatively more power in fluctuations that are not traveling compared to δv.

3.9. Wave speeds and Plasma Beta

We have determined the phase speeds of the waves along the inferred trajectories by separating

the upward versus downward waves and using a cross-correlation method to determine the lag time

between different positions along the path, following Tomczyk & McIntosh (2009). The separation

of the upward versus downward waves is necessary because the superposition of counterpropagating

waves of equal amplitude will form a standing wave, which the cross-correlation method will see as

having an infinite phase speed. Even if the amplitudes are not equal, the phase speed will be biased.

Thus, the first step for determining the phase speeds is to construct a time-distance map that selects

only one direction of waves. We do this by performing the inverse Fourier transform of the k − ω

diagram using either only the negative (outward) or positive (inward) wave ω. Next we select a

reference height i near the center of the wave trajectory. We then find the cross correlation of the

fluctuations at each other height j with the reference as a function of lag time cij(τ). The cross

correlation as a function of the lag time is fit with a parabola to find the lag time τij that maximizes

cij. Finally, we fit a linear function to the plot of lag times τij versus distance from the reference

pixel ∆sij and obtain the speed as the slope of that line. Figure 16 shows an example of such a fit

for upward δv fluctuations along the trajectory highlighted in Figure 10. Note that this method is

only sensitive to the components of the velocity in the plane-of-sky.

We applied the lag time analysis to all of the wave trajectories that pass through 1.1 R⊙. For both

δi and δv fluctuations, there was no significant difference in the phase speeds in the upward versus

downward direction. This makes sense as the mean flow speeds at these low heights are expected

to be small so there is no physical reason for the measured fluctuation speeds to differ. As we have
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Figure 15. Polar plot illustrating ηδv (red symbols) and ηδi (blue symbols) for wave trajectories at varying

polar angles with starting points at 1.1 R⊙. The solid circle indicates η = 0 with larger radii corresponding

to η > 0 and smaller radii η < 0. Dotted circles are drawn at intervals of ∆η = 0.1 for scale. The background

image is the average Fe xiii intensity as in Figure 1.

earlier shown that there is more power in the upward fluctuations, the upward signals are relatively

less affected by noise and their speeds are typically measured with greater precision. For that reason,

the rest of the discussion here will be based only on the upward fluctuation speeds.
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Figure 16. Lag time versus distance for δv fluctuations along the trajectory highlighted in Figure 10. The

vertical error bars are the uncertainties in the lag time from the parabolic fit to the cross correlation cij(τ).

Figure 17 shows a polar plot of the measured wave speeds. The red symbols correspond to δv

fluctuations and the blue symbols to δi fluctuations. The speed is proportional to the radial distance

from the solid circle, which represents zero, and the dotted circles indicate intervals of 200 km s−1.

Because we are measuring the motions of the fluctuations as they propagate through the image, these

speeds correspond only to the plane-of-sky velocity. The actual propagation speeds are necessarily

greater than those we have inferred because we are ignorant of the line-of-sight component of the

speed. However, as δv and δi appear to propagate in the same direction, it remains valid to compare

their speeds to one another.

The relationship between the speeds of δv versus δi fluctuations appears to fall into two classes

depending on whether the fluctuations are traveling along short closed loops or long paths that do

not close within the bounds of our measurements (refer to Figure 10). The short closed loops are

found at middle latitudes. In these locations, the speeds of the δv and δi fluctuations are nearly the
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same. This suggests that both types of fluctuations in these locations reflect the same underlying

wave mode, such as compressive modes along these loops.

The long open trajectories, seen most clearly at moderately low latitudes on the east limb, exhibit

significant differences in the wave speeds of δv versus δi fluctuations. The speeds of the δv fluctuations

are greater by several hundred km s−1 than those of the δi fluctuations. This suggests that the δv

fluctuations here correspond to Alfvénic waves and the δi fluctuations are dominated by slow mode

acoustic waves. If we adopt this interpretation, then we may estimate the plasma β, i.e., the ratio of

the fluid to magnetic pressure, from the ratio of the observed sound and Alfvén speeds as β ∼ c2s/V
2
A .

The median value of β for these open trajectories is then about β ≈ 0.5.

4. DISCUSSION

The δv fluctuations observed in the corona appear to be predominantly in the form of Alfvénic

waves, as has been previously recognized (Tomczyk et al. 2007). Fourier analysis of the time-distance

maps of these waves (Figure 13) suggests that they obey a linear dispersion relation with propagation

speeds of & 500 km s−1, which are consistent with Alfvénic waves.

The physical significance of the δi fluctuations is less clear. They likely arise due to multiple

phenomena. In some regions, especially relatively short closed loops, the dominant δi fluctuations

appear to have similar speeds and frequencies to the δv fluctuations. In these cases, δi may be due to

density variations associated with fast compressional modes. In other regions, corresponding usually

to long trajectories, we find that the δi fluctuations propagate slower than δv fluctuations and appear

at different frequencies. In these cases, much of the δi fluctuation power may come from slow mode

acoustic waves. However, even for these open trajectories, the k-ω diagrams for δi fluctuations do

not resolve into a clear dispersion relation (e.g., Figure 14). In all regions of the corona, a significant

amount of density fluctuation power is likely due to erratic changes that are not associated with

waves. Such sources may include eruptions, flows, and impulsive heating events. This ambiguity

adds to the well-known problem of distinguishing slow mode waves from quasi-periodic pulsations

(see Banerjee et al. 2021, and references therein).
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Figure 17. Plane-of-sky propagation speeds for δv fluctuations (red symbols) and δi fluctuations (blue

symbols). The speed is indicated by the radial distance from the solid circle, which corresponds to a speed

of zero. Dotted circles are at intervals of 200 km s−1.

In describing these characteristics, we have noted that there is an apparent distinction between the

behavior of fluctuations on short loops and open trajectories. By short loops we mean, essentially,

those whose maximum height is around 1.3 R⊙ so that the top of the loop falls within our field of

view. The long trajectories are those regions where the fluctuations appear to propagate roughly
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radially from the base of the corona to the outer radius of our available data. It is interesting to note

that these open trajectories do not correspond to open magnetic field lines. Rather, they appear to

correspond to the bases of long loops whose loop tops are well beyond the field of view of the COMP

data. Both of these structures are expected to have plasma properties typical of the quiet Sun, and

so the apparent differences in the behavior of fluctuations along these structures is likely related to

the loop length.

Much previous work has distinguished between the behavior of waves on open field lines versus

closed field regions, but our observations suggest that there is an intermediate behavior on long

loops. The reasons for this are not yet clear and should be investigated in future work. However, we

can speculate on several explanations. One possibility is that the behavior is related to the ability

to form standing modes on the loops. In this case, it may be that the short loops are capable of

supporting low-order resonances, but for the longer loops the dominant wave frequencies are non-

resonant. Another possibility is that the long loops are open from the waves’ perspective because

of dissipation at large heights. That is, on the shorter loops waves from opposite footpoints still

retain significant wave power at the locations where they collide with one another. However, on the

long loops, waves from opposite footpoints lose most of their energy before they encounter waves

propagating up from the opposite footpoint. From the perspective of the waves, such a long loop

would be similar to an open field line.

Even on the long trajectories, we found that there is a substantial fraction of Alfvénic wave energy

that is traveling towards the Sun, as can be seen from the positive frequency half of the k-ω diagrams.

Our estimated average ηδv = 0.14 corresponds to up to 40% of the wave energy traveling towards the

Sun. However, this is likely an overestimate because it is sensitive to noise level in estimating the

normalization for η. If it is the case that the injected wave energy from the footpoints is dissipated

before it can reach the other half of the loop, then the downward wave energy must be generated

within the loop as a reflection or instability of the incident upward propagating waves. Many of

the possible processes that would cause this involve interactions between the Alfvénic waves and
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density fluctuations, either because the density fluctuations enhance the wave reflection or due to an

interaction through PDI.

One objective of this investigation was to determine the nature of the relationship between the δv

and δi fluctuations. We were particularly interested in seeing whether PDI is a common process in

the corona, but the data here are ambiguous. This is largely because the δi fluctuations appear to be

caused by several different physical processes, which impedes our ability to make a direct comparison

with δv fluctuations such as was done in Hahn et al. (2022a). Tentatively, it appears that PDI is

unimportant on the shorter closed loops, whose dynamics we hypothesize to be more dominated by

Alfvénic wave collisions between the primary Alfvénic waves traveling up from the footpoints. This is

consistent with the relevant timescales as well. The Alfvén waves have periods of about 5 minutes and

for the measured Alfvén speed the travel time from one footpoint to the other of a short ∼ 500 Mm

loop is about 20 minutes, or a few wave periods. The PDI growth rate is expected to be a small

fraction of the pump wave frequency (see e.g., Hahn et al. 2022a), leading to growth timescales of

hours. Thus, Alfvén wave collisions are probably a more important effect than PDI on short loops.

In contrast, there do appear to be frequency scaling relations on the longer wave trajectories that

are suggestive of PDI, which would very likely also apply to open field regions. Future measurements

should aim to verify this by focusing on open structures.

Additionally, our analysis of the cross-power spectrum showed that there are structures where the

δi and δv fluctuations at a given frequency show a definite phase difference. This suggests that

they arise from the same underlying wave mode. Although there is much scatter in the data, the

dichotomy between long and short loops appears also to be true in these measurements, where there

is a tendency for the longer loops to exhibit phase differences of φ ∼ π/2 versus short loops having

phase differences near zero.

5. SUMMARY

We have investigated the general properties of δv and δi fluctuations in the quiet Sun corona and

their interactions with one another. The δv fluctuations have a distinct dispersion relation in a k−ω

diagram indicating that the majority of those δv fluctuations are Alfvénic waves. We find typical



41

amplitudes of 0.5–1 km s−1 growing with height, at least for the observed heights of 1.1–1.3 R⊙. The

δv fluctuations have median perpendicular correlation lengths of ≈ 7 Mm. They are predominantly

in the outward direction with typically ηδv ≈ 0.14. These values are in agreement with previous

results for δv fluctuations observed by COMP (e.g., Tomczyk et al. 2007; Tomczyk & McIntosh 2009;

Morton et al. 2016; Sharma & Morton 2023).

The δi fluctuations are a proxy for density fluctuations, but they appear to arise from several phys-

ical processes including possibly compressional fast waves, slow mode acoustic waves, and aperiodic

variations. The δi fluctuations have typical amplitudes of a few percent, which also grow with height

over the observed field of view. They have median perpendicular correlation lengths of about 11 Mm,

though with a broad distribution so that this length is not significantly different from that of the

δv fluctuations. The δi fluctuation are also predominantly in the outward direction with ηδi ≈ 0.1.

However ηδi is correlated with ηδv. The apparently smaller magnitude of ηδi compared to ηδv is likely

because much of δi fluctuation power is not in the form of propagating waves.

The relations between δv and δi is complex and differs depending on the underlying coronal struc-

tures. On short closed loops, we find that power spectra of both types of fluctuations are very similar

and that they have similar propagation speeds. Examining the phase relationship at 3.5 mHz on

these loops suggests that they have a phase difference near 0. These properties may indicate that

both fluctuations are due to the same underlying wave mode.

On the long quiet Sun structures oriented radially within our data, the δv and δi fluctuations have

different power spectra, which in some cases can be related by a frequency-scaling factor. They also

have significantly different speeds, with the δv fluctuations traveling hundreds of km s−1 faster than

the δi fluctuations. These longer structures show evidence for wave reflection or PDI, which we plan

to investigate in more detail in future work. We also find evidence for another relationship on the

long field lines, where we observed δv and δi fluctuations at the same frequency with consistent phase

differences of roughly π/2, suggesting they are due to the same wave mode.

In order to better understand the complex variety of relationships between δv and δi fluctuations in

the corona, future measurements should aim to overcome several limitations of the COMP data. First,
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the COMP data have rather coarse spatial resolution. A similar analysis should be performed on data

with a spatial resolution sufficient to resolve the transverse structure of coronal loops. Second, the

COMP data observe an Fe xiii line, which is formed at relatively high temperatures and is therefore

insensitive to coronal holes. Hence, we probably do not observe quiescent open magnetic field lines.

Measurements of lines formed at cooler temperatures are needed to study open field structures. We

next plan to conduct an analysis of DKIST data to address some of these limitations.
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APPENDIX

A. SYSTEMATIC FACTORS INFLUENCING THE MEASUREMENT OF THE

PERPENDICULAR CORRELATION LENGTH

In Section 3.6 we described measurements of L⊥ for δv and δi fluctuations. Here, we focus on the

δv measurements. To derive L⊥, we computed the cross correlation between each pixel and a region

of neighboring pixels within a box of ±12 pixels. We took the Gaussian width of these islands as a

measure of the perpendicular correlation length. We obtained a sample of L⊥ at N = 45, 215 pixels

with converged fits within the off-limb corona. A histogram of this set of L⊥ measurements resembles

a lognormal distribution characterized by a median value of L⊥ = 7.0 Mm and a most probable value

of 5.0 Mm (see Figure 18). Sharma & Morton (2023) performed similar measurements of L⊥ for δv

fluctuations, finding similar typical values for L⊥ and remarking that their histograms also resembled

a lognormal distribution.

Here, our objective is to explore whether observational biases may prevent the measurement of small

L⊥ values. In particular, we identify systematic reasons that an underlying power-law distribution

may be distorted by the measurements into a form that is roughly lognormal.

A.1. Analysis

Figure 18 shows a histogram of the L⊥ measurements. In constructing the histogram, we omit

values larger than 54 Mm, because this L⊥ corresponds to a σ⊥ that exceeds the ±12 pixel width of

field of view used in the correlation analysis described in Section 3.6. We expect fits of such outlier

L⊥ values to represent poor fits or pixels where the high correlation island was not clear. We then

normalize the measured L⊥ histogram by dividing by the total number of samples (N = 45, 215)

and the width of the binning used for the histogram, in this case w = 0.45 Mm. The normalization

ensures that the integral of the histogram is equal to one, so that we can compare the distribution

to the standard normalized form of probability distribution functions (pdfs). We have verified that
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the bin size used in constructing the histogram does not qualitatively affect the results and we also

make use of metrics that are insensitive to the binning.

As a first step, we quantify the parameters of the lognormal distribution that best fits the obser-

vations. The pdf for the lognormal distribution is given by:

p(x) =
1

σx
√
2π

exp

[

−(ln(x)− µ)2

2σ2

]

. (A1)

The parameters µ and σ represent the mean and standard deviation of ln(x), which follows a normal

(Gaussian) distribution. The normal distribution occurs frequently in statistics, because it is a natural

consequence of the central limit theorem, namely that the sum of independent random variables tends

to follow the normal distribution (Meyer 1975). The lognormal distribution has a similar central limit

theorem, except with multiplication rather than addition, because the logarithm of the product is

sum of the logarithms of each term. This situation occurs, for example, in fragmentation processes

where the size of each fragment of an object is a fraction of its previous size (Crow & Shimizu 1988).

The blue curve in Figure 18 shows the lognormal distribution that best fits the measurements. The

best fit parameters were µ = 1.91 ± 0.01 and σ = 0.439± 0.008. It would be useful to also describe

the perpendicular wavenumber k⊥ ≈ 2π/L⊥. The distribution of the inverse of a variable that is

lognormally distributed is also lognormal, with the same σ, but the µ becomes negative. Accounting

for the factor of 2π in the definition of k⊥, the µ parameter for lognormal k⊥ distribution would be

µ = −0.072.

A.1.1. Convolution Model

Our hypothesis is that there may be many values with small L⊥ that we are not able to measure due

to systematic factors. One distribution that is consistent with this hypothesis is a power law. The

convolution of a Gaussian and a power-law distribution somewhat resembles a lognormal distribution

and can arise if normally distributed random errors are added to power-law distributed data. So, we

next investigate whether such a convolution provides a better fit to the measured distribution. The

normalized Gaussian distribution with mean zero is given by:

1√
2πs

exp

[

− x2

2s2

]

, (A2)
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Figure 18. Histogram of the measured L⊥ shown as a histogram in grey. The blue curve shows the best-fit

lognormal distribution. The red curve illustrates the best-fit distribution obtained by convolving a power

law with a Gaussian. The convolved distribution is a better match to the measurements.

where s represents the standard deviation of the distribution. A normalized power-law distribution

can be defined described by

Pα(x) =
α− 1

x0

(

x

x0

)−α

, (A3)

where α > 1 is the power-law index and x0 is a low-value cutoff, which ensures that the distribution

can be normalized. The convolution of these distributions is the integral

Pα ⋆ G =

∫ ∞

x0

Pα(x
′)G(x− x′) dx′. (A4)

The integration was performed numerically. We will refer to the resulting distribution as the Con-

volved distribution henceforth. We note that Parodi & Bortfeld (2006) have obtained closed form

solutions in terms of special functions for a different formulation of the power-law distribution that

is valid for power-law indices between 0 and 1.

We performed a least-squares fit to the histogram of the L⊥ measurements to find the parameters

of the best fit convolved distribution parameters. The resulting fit is illustrated by the red curve in

Figure 18. The best fit parameters were α = 2.45±0.03, x0 = 4.22±0.02 Mm, and s = 0.97±0.03 Mm.
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The convolved distribution is a better fit to the data than the lognormal distribution. This is clear

from Figure 18, as well as more quantitative metrics. The least-squares fit minimizes the sum of

the squared differences between the observed and model distribution. This value is smaller for the

convolved distribution (1.3× 10−3) than the lognormal distribution (6.8× 10−3).

We have also used an alternative metric to compare the fits, the Akaike information criterion

(AIC), which confirms that the convolved distribution is the better fit. The AIC is computed by first

computing the likelihood function L, given by:

L =

N
∑

i

ln f(xi), (A5)

where f is the pdf representing a given model and xi is the value of the i-th measured datapoint, of

which there are N in total. The AIC is defined by

AIC = 2k − 2 lnL (A6)

where k is the number of parameters in the model: 2 (µ and σ) for the lognormal distribution and 3

(α, x0, and s) for the convolved distribution. A lower value of the AIC indicates a superior fit. In this

case, the AIC values are comparable, but favor the Convolved distribution with AIC=2.5 × 105 for

the Convolved distribution versus 2.6×105 for the lognormal distribution. The AIC has two benefits:

First, it uses the data directly and is thereby independent of the binning used in constructing the

histogram. Second, it accounts for the different number of parameters in the models. That is, one

might expect that a 3-parameter model will give a better fit than a 2-parameter model, simply

because there is more freedom to adjust the model. The AIC test accounts for this advantage.

As a third metric, we have also computed the Kolmogorov-Smirnov (KS) test statistic for both

models. The KS test is designed to test whether two sets of data come from the same probability

distribution function. It uses the cumulative distribution function, cdf(x), which is the integral of

the pdf up to x. The KS statistic is the absolute value of the maximum difference between the cdf

of the two distributions being tested. Once again, the KS test shows that the convolved distribution

(KS = 0.051) is a better match to the data than the lognormal distribution (KS = 0.097).
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A.1.2. A simple aggregation model

An alternative model that provides a reasonable match to the observed distribution is that the actual

distribution of L⊥ follows a power-law distribution, but the measured distribution is distorted by

sampling and averaging over that distribution. We will refer to this as the aggregation model. For this

model, suppose that the data come from a power-law distribution described by Equation (A3). The

measured value, though, represents an average of n samples drawn from the power-law distribution

with n assumed to follow a Poisson distribution. Physically, this model could represent the averaging

of multiple structures along the line of sight in the measurements of the optically-thin corona.

In order to determine whether this model is consistent with the data and the best-fit parameters,

we simulated the process described above. That is, we selected random numbers from a power-law

distribution with parameters α and x0 and averaged over n of those numbers, where n was a random

number drawn from a Poisson distribution with a mean value of n0. This process was repeated 1,000

times and then the distribution of the resulting averages was examined. In order to identify the

best fit parameters (α, x0, and n0), we used a differential evolution algorithm to minimize the KS

statistic comparing the model distribution to the measurements of L⊥. Minimizing the KS metric

has several advantages over performing a least-squares fit. One is that the KS metric is independent

of the binning for the histogram. More importantly, the KS metric is robust to statistical variations

in the model distribution. A least-squares fit requires many more samples to converge, because the

samples are generated stochastically and so χ2 varies with each iteration, even if the fit-parameters

remain the same. Because of these random variations, the fit parameters vary slightly with each run,

so we estimate the uncertainties on the fit parameters by taking the average and standard deviation

of the best fit values over 20 runs.

Figure 19 compares aggregation model to the measurements for the averaged best-fit parameters.

These parameters were α = 2.02± 0.09, x0 = 1.2± 0.4 Mm, n = 1.0 ± 0.3× 102. From the figure it

is clear that the aggregate model provides a good fit to the data and in fact the average aggregate

model KS of KS = 0.046 was comparable to that of the convolved distribution. It is not possible to
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Figure 19. Histogram of the measured L⊥ shown as a histogram in grey. The black curve shows the best

fit aggregation model, which is obtained by averaging data values drawn from a power-law distribution.

compare the other metrics discussed above, because we have not derived an explicit expression for

the pdf corresponding to the aggregation model.

A.2. Discussion

The above models demonstrate that even if the actual distribution of L⊥ were statistically dis-

tributed as a power law, we could obtain a distribution that approximates a lognormal distribution

due to systematic biases in the measurement. One way this can happen is if the measurement in-

volves the addition of normally distributed random noise, which will result in a convolution of the

power law with a Gaussian. A second way is if the measurement involves an implicit aggregation or

averaging of the power-law distributed values.

Our measurement process does involve steps that are consistent with these factors. Considering the

convolution model, the analysis of the correlation lengths involves computing a cross correlation of

time-series data, which has photon counting noise as well as noise from the detector. There are also

uncertainties involved in the step where the cross correlation is fit with a Gaussian to infer σ⊥. From

the perspective of the aggregation model, the observed Doppler velocity fluctuations are measured
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using optically thin emission lines and those Doppler velocities are implicitly averaged along the

line of sight. This averaging is known to have a significant effect on the amplitudes of the Doppler

fluctuations (McIntosh & De Pontieu 2012). Other observational factors may also contribute to the

observed distribution. For example, the instrument resolution may limit the ability to measure below

a certain length scale. It is suggestive that the convolved fit identifies a cutoff value of x0 = 4.2 Mm,

which is very close to the effective pixel scale 4.5 Mm. There may also be physical limits to the

distribution, for example if Alfvénic waves with small L⊥ are preferentially dissipated.

The properties of the distribution of L⊥ have physical implications. A power-law distribution of L⊥

suggests that most of the Alfvénic wave energy is concentrated at small L⊥ and that large L⊥ values

occur sporadically. In contrast, a lognormal distribution, suggests that there is a preferred scale for

the L⊥. For example, there is a peak in the solar p-mode spectrum at spherical harmonics with

angular wavenumbers of l ∼ 300, which corresponds to lengths of ∼ 10 Mm (e.g., Hernándex et al.

1998). This would be consistent with the median measured values of L⊥ found here.

In solar physics, the question of distinguishing a power law from a lognormal distribution also occurs

in the study of the distribution of flare energies. Many studies of flare energies, or proxies such as

the X-ray flux, have inferred that these energies follow a power-law distribution. If α > 2 for these

energies, then there are sufficiently numerous small events to heat the corona, which is the basis for

the nanoflare theory of coronal heating. This power-law form of the nanoflare distribution has been

invoked in support of models of nanoflares based on self-organized criticality (Charbonneau et al.

2001) or turbulence (e.g., Boffetta et al. 1999). However, it has also been argued that the flare

distribution is not a power law. Verbeeck et al. (2019) shows that some proxies, such as solar flare

EUV intensities, are better fit by a lognormal distribution, although other proxies, such as the X-ray

flux, do seem consistent with a power law.

Some of the models that we have discussed in terms of the L⊥ measurements may have relevance

to the problem of understanding the distribution of flares. D’Huys et al. (2016) argued that some

of the power-law fits obtained were not performed in a rigorous way. One factor is that many

of these fits are performed only for data that exceed a certain threshold. Buchlin et al. (2005)
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supported imposing such a threshold in the analysis definition as being consistent with the power-

law distribution, because line-of-sight averaging in observational studies causes small events to be

not observed. This is essentially the same issue that we have addressed in the aggregation model

without imposing an ad hoc threshold.

Another example in solar physics of the connection between lognormal and power-law distributions

concerns the intensity distribution of the quiet Sun and its relationship to nanoflare coronal heating.

Pauluhn et al. (2000) studied the intensity distribution of the quiet Sun chromosphere, transition

region, and corona. They found that the distribution of these intensities was well-described by a log-

normal distribution. However, nanoflare heating models that assume a power-law energy distribution

are able to reproduce these lognormal intensity distributions (Pauluhn & Solanki 2007; Hahn et al.

2022b). The processes that allow the nanoflare power-law distribution to generate lognormally dis-

tributed intensities involve steps that have a similar effect as our convolution and aggregation models.

A.3. Summary

The statistical distribution of measurements of the perpendicular correlation length of Doppler

velocity fluctuations in the corona resembles a lognormal distribution. However, the observations

can be better fit by models that consider the underlying distribution to be a power law. These

models can represent the addition of noise and the implicit averaging in the observation, along with

other systematic factors, such as the influence of spatial resolution.

These interpretations are tentative. There is insufficient information to determine objectively the

true distribution of the data. These L⊥ measurements come from different locations throughout the

corona. If the characteristics of Alfvénic wave excitation are not uniform throughout the corona,

structural differences in the corona may cause real variations L⊥ and possibly this accounts for

the observed distribution. Alternatively, the peak in the L⊥ distribution may represent a preferred

length scale for injecting wave energy into the corona, such as a peak in the p-mode spectrum.

Further insight into the nature of the L⊥ measurements will be gained by making measurements

with different instruments having different limitations.
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Our conclusion is therefore limited to demonstrating the possibility that existing measurements

have not resolved the smallest L⊥ values. This possibility has important implications, because it

implies that there may be a large population of Alfvénic waves in the corona with small perpendicular

wavelengths (high k⊥). Such waves could arise from the turbulent excitation of the Alfvénic waves

or Alfvénic turbulence in situ driving waves to high k⊥. Alternatively, the Alfvénic waves might

be excited by nanoflares occuring on small unresolved spatial scales. However, our inferred power-

law parameters should not be directly interpreted to represent the power spectrum of turbulence

as a function of k⊥; the assumed L⊥ power-law slopes in the opposite direction of that predicted

for turbulence, which predicts greater power at larger values of L⊥. Accurate measurements of

the perpendicular correlation lengths or wavenumbers in the corona will require higher resolution

measurements and a more comprehensive modeling of systematic factors.
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